Unsupervised Feature Learning for Speech Using Correspondence and Siamese Networks
نویسندگان
چکیده
منابع مشابه
A Computational Model of Unsupervised Speech Segmentation for Correspondence Learning
In this paper, we develop a new conceptual framework for an important problem in language acquisition, the correspondence problem: the fact that a given utterance has different manifestations in the speech and articulation of different speakers and that the correspondence of these manifestations is difficult to learn. We put forward the Correspondence-by-Segmentation Hypothesis, which states th...
متن کاملFeature Selection for Unsupervised Learning
In this paper, we identify two issues involved in developing an automated feature subset selection algorithm for unlabeled data: the need for finding the number of clusters in conjunction with feature selection, and the need for normalizing the bias of feature selection criteria with respect to dimension. We explore the feature selection problem and these issues through FSSEM (Feature Subset Se...
متن کاملFeature Reduction for Unsupervised Learning
In this project, four unsupervised feature reduction algorithms for clustering problem were investigated and experimented upon two sets of data – handwritten digits data set and the functional magnetic resonance imaging (fMRI) resting state data set. Ratio of sum of squares (RSS), leverage score (LEV), and Laplacian score (LAP) were used to rank the influences of the features in the clustering....
متن کاملUnsupervised Feature Learning using Self-organizing Maps
In recent years a great amount of research has focused on algorithms that learn features from unlabeled data. In this work we propose a model based on the Self-Organizing Map (SOM) neural network to learn features useful for the problem of automatic natural images classification. In particular we use the SOM model to learn single-layer features from the extremely challenging CIFAR-10 dataset, c...
متن کاملDeep Spectral Descriptors: Learning the point-wise correspondence metric via Siamese deep neural networks
A robust and informative local shape descriptor plays an important role in mesh registration. In this regard, spectral descriptors that are based on the spectrum of the Laplace-Beltrami operator have gained a spotlight among the researchers for the last decade due to their desirable properties, such as isometry invariance. Despite such, however, spectral descriptors often fail to give a correct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Signal Processing Letters
سال: 2020
ISSN: 1070-9908,1558-2361
DOI: 10.1109/lsp.2020.2973798